Direct-from-Video: Unsupervised NRSfM

نویسندگان

  • Karel Lebeda
  • Simon Hadfield
  • Richard Bowden
چکیده

In this work we describe a novel approach to online dense non-rigid structure from motion. The problem is reformulated, incorporating ideas from visual object tracking, to provide a more general and unified technique, with feedback between the reconstruction and point-tracking algorithms. The resulting algorithm overcomes the limitations of many conventional techniques, such as the need for a reference image/template or precomputed trajectories. The technique can also be applied in traditionally challenging scenarios, such as modelling objects with strong self-occlusions or from an extreme range of viewpoints. The proposed algorithm needs no offline pre-learning and does not assume the modelled object stays rigid at the beginning of the video sequence. Our experiments show that in traditional scenarios, the proposed method can achieve better accuracy than the current state of the art while using less supervision. Additionally we perform reconstructions in challenging new scenarios where state-of-the-art approaches break down and where our method improves performance by up to an order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grouping-Based Low-Rank Trajectory Completion and 3D Reconstruction

Extracting 3D shape of deforming objects in monocular videos, a task known as non-rigid structure-from-motion (NRSfM), has so far been studied only on synthetic datasets and controlled environments. Typically, the objects to reconstruct are pre-segmented, they exhibit limited rotations and occlusions, or full-length trajectories are assumed. In order to integrate NRSfM into current video analys...

متن کامل

An Effective Approach for NRSFM of Small-Size Image Sequences

In recent years, non-rigid structure from motion (NRSFM) has become one of the hottest issues in computer vision due to its wide applications. In practice, the number of available high-quality images may be limited in many cases. Under such a condition, the performances may not be satisfactory when existing NRSFM algorithms are applied directly to estimate the 3D coordinates of a small-size ima...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

NRSfM-Flow: Recovering Non-Rigid Scene Flow from Monocular Image Sequences

Scene flow recovery from monocular image sequences is an emerging field in computer vision. While existing Monocular Scene Flow (MSF) methods extend the classical optical flow formulation to estimate depths/disparities and 3D motion, we propose a framework based on Non-Rigid Structure from Motion (NRSfM) technique — NRSfM-Flow. Therefore, both problems are formulated in the continuous domain an...

متن کامل

Recovering Pose and 3D Deformable Shape from Multi-instance Image Ensembles

In recent years, there has been a growing interest on tackling the Non-Rigid Structure from Motion problem (NRSfM), where the shape of a deformable object and the pose of a moving camera are simultaneously estimated from a monocular video sequence. Existing solutions are limited to single objects and continuous, smoothly changing sequences. In this paper we extend NRSfM to a multi-instance doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016